801 lines
33 KiB
C

#include <asm/mach-ifxmips/cgu.h>
#include <linux/module.h>
#include <linux/atmdev.h>
#include <linux/irq.h>
#include "common.h"
#include "proc.h"
// our main struct
struct ppe_dev ppe_dev;
static int port_max_connection[2] = {7, 7}; /* Maximum number of connections for ports (0-14) */
static int port_cell_rate_up[2] = {3200, 3200}; /* Maximum TX cell rate for ports */
static int qsb_tau = 1;
static int qsb_srvm = 0x0f;
static int qsb_tstep = 4;
static int write_descriptor_delay = 0x20;
static int aal5_fill_pattern = 0x007E;
static int aal5r_max_packet_size = 0x0700;
static int aal5r_min_packet_size = 0x0000;
static int aal5s_max_packet_size = 0x0700;
static int aal5s_min_packet_size = 0x0000;
static int aal5r_drop_error_packet = 1;
static int dma_rx_descriptor_length = 48;
static int dma_tx_descriptor_length = 64;
static int dma_rx_clp1_descriptor_threshold = 38;
//module_param(port_max_connection, "2-2i");
//module_param(port_cell_rate_up, "2-2i");
module_param(qsb_tau, int, 0);
module_param(qsb_srvm, int, 0);
module_param(qsb_tstep, int, 0);
module_param(write_descriptor_delay, int, 0);
module_param(aal5_fill_pattern, int, 0);
module_param(aal5r_max_packet_size, int, 0);
module_param(aal5r_min_packet_size, int, 0);
module_param(aal5s_max_packet_size, int, 0);
module_param(aal5s_min_packet_size, int, 0);
module_param(aal5r_drop_error_packet, int, 0);
module_param(dma_rx_descriptor_length, int, 0);
module_param(dma_tx_descriptor_length, int, 0);
module_param(dma_rx_clp1_descriptor_threshold, int, 0);
MODULE_PARM_DESC(port_cell_rate_up, "ATM port upstream rate in cells/s");
MODULE_PARM_DESC(port_max_connection, "Maximum atm connection for port (0-1)");
MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
MODULE_PARM_DESC(a5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
void init_rx_tables(void)
{
int i, j;
struct wrx_queue_config wrx_queue_config = {0};
struct wrx_dma_channel_config wrx_dma_channel_config = {0};
struct htu_entry htu_entry = {0};
struct htu_result htu_result = {0};
struct htu_mask htu_mask = { set: 0x03,
pid_mask: 0x00,
vpi_mask: 0x00,
vci_mask: 0x00,
pti_mask: 0x00,
clear: 0x00};
/*
* General Registers
*/
*CFG_WRX_HTUTS = ppe_dev.max_connections + OAM_HTU_ENTRY_NUMBER;
*CFG_WRX_QNUM = ppe_dev.max_connections + OAM_RX_QUEUE_NUMBER + QSB_QUEUE_NUMBER_BASE;
*CFG_WRX_DCHNUM = ppe_dev.dma.rx_total_channel_used;
*WRX_DMACH_ON = (1 << ppe_dev.dma.rx_total_channel_used) - 1;
*WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
/*
* WRX Queue Configuration Table
*/
wrx_queue_config.uumask = 0;
wrx_queue_config.cpimask = 0;
wrx_queue_config.uuexp = 0;
wrx_queue_config.cpiexp = 0;
wrx_queue_config.mfs = ppe_dev.aal5.rx_max_packet_size; // rx_buffer_size
wrx_queue_config.oversize = ppe_dev.aal5.rx_max_packet_size;
wrx_queue_config.undersize = ppe_dev.aal5.rx_min_packet_size;
wrx_queue_config.errdp = ppe_dev.aal5.rx_drop_error_packet;
for ( i = 0; i < QSB_QUEUE_NUMBER_BASE; i++ )
*WRX_QUEUE_CONFIG(i) = wrx_queue_config;
for ( j = 0; j < ppe_dev.max_connections; j++ )
{
#if !defined(ENABLE_RX_QOS) || !ENABLE_RX_QOS
/* If RX QoS is disabled, the DMA channel must be fixed. */
wrx_queue_config.dmach = ppe_dev.connection[i].rx_dma_channel;
#endif // !defined(ENABLE_RX_QOS) || !ENABLE_RX_QOS
*WRX_QUEUE_CONFIG(i++) = wrx_queue_config;
}
/* OAM RX Queue */
for ( j = 0; j < OAM_RX_DMA_CHANNEL_NUMBER; j++ )
{
#if defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
wrx_queue_config.dmach = RX_DMA_CH_OAM;
#else
wrx_queue_config.dmach = ppe_dev.oam_rx_dma_channel + j;
#endif // defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
*WRX_QUEUE_CONFIG(i++) = wrx_queue_config;
}
wrx_dma_channel_config.deslen = ppe_dev.dma.rx_descriptor_number;
wrx_dma_channel_config.chrl = 0;
wrx_dma_channel_config.clp1th = ppe_dev.dma.rx_clp1_desc_threshold;
wrx_dma_channel_config.mode = WRX_DMA_CHANNEL_COUNTER_MODE;
wrx_dma_channel_config.rlcfg = WRX_DMA_BUF_LEN_PER_DESCRIPTOR;
for ( i = 0; i < ppe_dev.dma.rx_total_channel_used; i++ )
{
wrx_dma_channel_config.desba = (((u32)ppe_dev.dma.rx_descriptor_base >> 2) & 0x0FFFFFFF) + ppe_dev.dma.rx_descriptor_number * i * (sizeof(struct rx_descriptor) >> 2);
*WRX_DMA_CHANNEL_CONFIG(i) = wrx_dma_channel_config;
}
/*
* HTU Tables
*/
for ( i = 0; i < ppe_dev.max_connections; i++ )
{
htu_result.qid = (unsigned int)i;
*HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
*HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
*HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
}
/* OAM HTU Entry */
htu_entry.vci = 0x03;
htu_mask.pid_mask = 0x03;
htu_mask.vpi_mask = 0xFF;
htu_mask.vci_mask = 0x0000;
htu_mask.pti_mask = 0x07;
htu_result.cellid = ppe_dev.oam_rx_queue;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = ppe_dev.oam_rx_queue;
*HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
htu_entry.vci = 0x04;
htu_result.cellid = ppe_dev.oam_rx_queue;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = ppe_dev.oam_rx_queue;
*HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
htu_entry.vci = 0x00;
htu_entry.pti = 0x04;
htu_mask.vci_mask = 0xFFFF;
htu_mask.pti_mask = 0x01;
htu_result.cellid = ppe_dev.oam_rx_queue;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = ppe_dev.oam_rx_queue;
*HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
}
void init_tx_tables(void)
{
int i, j;
struct wtx_queue_config wtx_queue_config = {0};
struct wtx_dma_channel_config wtx_dma_channel_config = {0};
struct wtx_port_config wtx_port_config = { res1: 0,
qid: 0,
qsben: 1};
/*
* General Registers
*/
*CFG_WTX_DCHNUM = ppe_dev.dma.tx_total_channel_used + QSB_QUEUE_NUMBER_BASE;
*WTX_DMACH_ON = ((1 << (ppe_dev.dma.tx_total_channel_used + QSB_QUEUE_NUMBER_BASE)) - 1) ^ ((1 << QSB_QUEUE_NUMBER_BASE) - 1);
*CFG_WRDES_DELAY = ppe_dev.dma.write_descriptor_delay;
/*
* WTX Port Configuration Table
*/
#if !defined(DISABLE_QSB) || !DISABLE_QSB
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
*WTX_PORT_CONFIG(i) = wtx_port_config;
#else
wtx_port_config.qsben = 0;
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
{
wtx_port_config.qid = ppe_dev.port[i].connection_base;
*WTX_PORT_CONFIG(i) = wtx_port_config;
printk("port %d: qid = %d, qsb disabled\n", i, wtx_port_config.qid);
}
#endif
/*
* WTX Queue Configuration Table
*/
wtx_queue_config.res1 = 0;
wtx_queue_config.res2 = 0;
// wtx_queue_config.type = 0x03;
wtx_queue_config.type = 0x0;
#if !defined(DISABLE_QSB) || !DISABLE_QSB
wtx_queue_config.qsben = 1;
#else
wtx_queue_config.qsben = 0;
#endif
wtx_queue_config.sbid = 0;
for ( i = 0; i < QSB_QUEUE_NUMBER_BASE; i++ )
*WTX_QUEUE_CONFIG(i) = wtx_queue_config;
for ( j = 0; j < ppe_dev.max_connections; j++ )
{
wtx_queue_config.sbid = ppe_dev.connection[i].port & 0x01; /* assign QSB to TX queue */
*WTX_QUEUE_CONFIG(i) = wtx_queue_config;
i++;
}
/* OAM TX Queue */
// wtx_queue_config.type = 0x01;
wtx_queue_config.type = 0x00;
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
{
wtx_queue_config.sbid = i & 0x01;
for ( j = 0; j < OAM_TX_QUEUE_NUMBER_PER_PORT; j++ )
*WTX_QUEUE_CONFIG(ppe_dev.port[i].oam_tx_queue + j) = wtx_queue_config;
}
wtx_dma_channel_config.mode = WRX_DMA_CHANNEL_COUNTER_MODE;
wtx_dma_channel_config.deslen = 0;
wtx_dma_channel_config.desba = 0;
for ( i = 0; i < QSB_QUEUE_NUMBER_BASE; i++ )
*WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
/* normal connection and OAM channel */
wtx_dma_channel_config.deslen = ppe_dev.dma.tx_descriptor_number;
for ( j = 0; j < ppe_dev.dma.tx_total_channel_used; j++ )
{
wtx_dma_channel_config.desba = (((u32)ppe_dev.dma.tx_descriptor_base >> 2) & 0x0FFFFFFF) + ppe_dev.dma.tx_descriptor_number * j * (sizeof(struct tx_descriptor) >> 2);
*WTX_DMA_CHANNEL_CONFIG(i++) = wtx_dma_channel_config;
}
}
static inline void qsb_global_set(void)
{
int i, j;
u32 qsb_clk = cgu_get_fpi_bus_clock(2);
u32 tmp1, tmp2, tmp3;
union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
int qsb_qid;
*QSB_ICDV = QSB_ICDV_TAU_SET(ppe_dev.qsb.tau);
*QSB_SBL = QSB_SBL_SBL_SET(ppe_dev.qsb.sbl);
*QSB_CFG = QSB_CFG_TSTEPC_SET(ppe_dev.qsb.tstepc >> 1);
/*
* set SCT and SPT per port
*/
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( ppe_dev.port[i].max_connections != 0 && ppe_dev.port[i].tx_max_cell_rate != 0 )
{
tmp1 = ((qsb_clk * ppe_dev.qsb.tstepc) >> 1) / ppe_dev.port[i].tx_max_cell_rate;
tmp2 = tmp1 >> 6; /* integer value of Tsb */
tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
/* carry over to integer part (?) */
if ( tmp3 == (1 << 6) )
{
tmp3 = 0;
tmp2++;
}
if ( tmp2 == 0 )
tmp2 = tmp3 = 1;
/* 1. set mask */
/* 2. write value to data transfer register */
/* 3. start the tranfer */
/* SCT (FracRate) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(tmp3);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
/* SPT (SBV + PN + IntRage) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
}
/*
* set OAM TX queue
*/
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( ppe_dev.port[i].max_connections != 0 )
{
tmp1 = ((qsb_clk * ppe_dev.qsb.tstepc) >> 1) / ppe_dev.port[i].tx_max_cell_rate;
tmp2 = tmp1 >> 6; /* integer value of Tsb */
tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
/* carry over to integer part (?) */
if ( tmp3 == (1 << 6) )
{
tmp3 = 0;
tmp2++;
}
if ( tmp2 == 0 )
tmp2 = tmp3 = 1;
/* 1. set mask */
/* 2. write value to data transfer register */
/* 3. start the tranfer */
/* SCT (FracRate) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(tmp3);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
/* SPT (SBV + PN + IntRage) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
}
/*
* * set OAM TX queue
* */
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( ppe_dev.port[i].max_connections != 0 )
for ( j = 0; j < OAM_TX_QUEUE_NUMBER_PER_PORT; j++ )
{
qsb_qid = ppe_dev.port[i].oam_tx_queue + j;
/* disable PCR limiter */
qsb_queue_parameter_table.bit.tp = 0;
/* set WFQ as real time queue */
qsb_queue_parameter_table.bit.wfqf = 0;
/* disable leaky bucket shaper */
qsb_queue_vbr_parameter_table.bit.taus = 0;
qsb_queue_vbr_parameter_table.bit.ts = 0;
/* Queue Parameter Table (QPT) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
/* Queue VBR Paramter Table (QVPT) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
}
}
static inline void clear_ppe_dev(void)
{
int i;
for (i = 0; i < ppe_dev.dma.tx_total_channel_used; i++ )
{
int conn = i + QSB_QUEUE_NUMBER_BASE;
int desc_base;
struct sk_buff *skb;
while(ppe_dev.dma.tx_desc_release_pos[conn] != ppe_dev.dma.tx_desc_alloc_pos[conn])
{
desc_base = ppe_dev.dma.tx_descriptor_number * (conn - QSB_QUEUE_NUMBER_BASE) + ppe_dev.dma.tx_desc_release_pos[conn];
if(!ppe_dev.dma.tx_descriptor_base[desc_base].own)
{
skb = ppe_dev.dma.tx_skb_pointers[desc_base];
atm_free_tx_skb_vcc(skb);
// pretend PP32 hold owner bit, so that won't be released more than once, so allocation process don't check this bit
ppe_dev.dma.tx_descriptor_base[desc_base].own = 1;
}
if (++ppe_dev.dma.tx_desc_release_pos[conn] == ppe_dev.dma.tx_descriptor_number)
ppe_dev.dma.tx_desc_release_pos[conn] = 0;
}
}
for (i = ppe_dev.dma.rx_total_channel_used * ppe_dev.dma.rx_descriptor_number - 1; i >= 0; i--)
dev_kfree_skb_any(*(struct sk_buff **)(((ppe_dev.dma.rx_descriptor_base[i].dataptr << 2) | KSEG0) - 4));
kfree(ppe_dev.dma.tx_skb_pointers);
kfree(ppe_dev.dma.tx_descriptor_addr);
kfree(ppe_dev.dma.rx_descriptor_addr);
}
static inline int init_ppe_dev(void)
{
int i, j;
int rx_desc, tx_desc;
int conn;
int oam_tx_queue;
#if !defined(ENABLE_RX_QOS) || !ENABLE_RX_QOS
int rx_dma_channel_base;
int rx_dma_channel_assigned;
#endif // !defined(ENABLE_RX_QOS) || !ENABLE_RX_QOS
struct rx_descriptor rx_descriptor = { own: 1,
c: 0,
sop: 1,
eop: 1,
res1: 0,
byteoff:0,
res2: 0,
id: 0,
err: 0,
datalen:0,
res3: 0,
dataptr:0};
struct tx_descriptor tx_descriptor = { own: 1, // pretend it's hold by PP32
c: 0,
sop: 1,
eop: 1,
byteoff:0,
res1: 0,
iscell: 0,
clp: 0,
datalen:0,
res2: 0,
dataptr:0};
memset(&ppe_dev, 0, sizeof(ppe_dev));
/*
* Setup AAL5 members, buffer size must be larger than max packet size plus overhead.
*/
ppe_dev.aal5.padding_byte = (u8)aal5_fill_pattern;
ppe_dev.aal5.rx_max_packet_size = (u32)aal5r_max_packet_size;
ppe_dev.aal5.rx_min_packet_size = (u32)aal5r_min_packet_size;
ppe_dev.aal5.rx_buffer_size = ((u32)(aal5r_max_packet_size > CELL_SIZE ? aal5r_max_packet_size + MAX_RX_FRAME_EXTRA_BYTES : CELL_SIZE + MAX_RX_FRAME_EXTRA_BYTES) + DMA_ALIGNMENT - 1) & ~(DMA_ALIGNMENT - 1);
ppe_dev.aal5.tx_max_packet_size = (u32)aal5s_max_packet_size;
ppe_dev.aal5.tx_min_packet_size = (u32)aal5s_min_packet_size;
ppe_dev.aal5.tx_buffer_size = ((u32)(aal5s_max_packet_size > CELL_SIZE ? aal5s_max_packet_size + MAX_TX_FRAME_EXTRA_BYTES : CELL_SIZE + MAX_TX_FRAME_EXTRA_BYTES) + DMA_ALIGNMENT - 1) & ~(DMA_ALIGNMENT - 1);
ppe_dev.aal5.rx_drop_error_packet = aal5r_drop_error_packet ? 1 : 0;
/*
* Setup QSB members, please refer to Amazon spec 15.4 to get the value calculation formula.
*/
ppe_dev.qsb.tau = (u32)qsb_tau;
ppe_dev.qsb.tstepc = (u32)qsb_tstep;
ppe_dev.qsb.sbl = (u32)qsb_srvm;
/*
* Setup port, connection, other members.
*/
conn = 0;
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
{
/* first connection ID of port */
ppe_dev.port[i].connection_base = conn + QSB_QUEUE_NUMBER_BASE;
/* max number of connections of port */
ppe_dev.port[i].max_connections = (u32)port_max_connection[i];
/* max cell rate the port has */
ppe_dev.port[i].tx_max_cell_rate = (u32)port_cell_rate_up[i];
/* link connection ID to port ID */
for ( j = port_max_connection[i] - 1; j >= 0; j-- )
ppe_dev.connection[conn++ + QSB_QUEUE_NUMBER_BASE].port = i;
}
/* total connection numbers of all ports */
ppe_dev.max_connections = conn;
/* OAM RX queue ID, which is the first available connection ID after */
/* connections assigned to ports. */
ppe_dev.oam_rx_queue = conn + QSB_QUEUE_NUMBER_BASE;
#if defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
oam_tx_queue = conn;
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( port_max_connection[i] != 0 )
{
ppe_dev.port[i].oam_tx_queue = oam_tx_queue + QSB_QUEUE_NUMBER_BASE;
for ( j = 0; j < OAM_TX_QUEUE_NUMBER_PER_PORT; j++ )
/* Since connection ID is one to one mapped to RX/TX queue ID, the connection */
/* structure must be reserved for OAM RX/TX queues, and member "port" is set */
/* according to port to which OAM TX queue is connected. */
ppe_dev.connection[oam_tx_queue++ + QSB_QUEUE_NUMBER_BASE].port = i;
}
/* DMA RX channel assigned to OAM RX queue */
ppe_dev.oam_rx_dma_channel = RX_DMA_CH_OAM;
/* DMA RX channel will be assigned dynamically when VCC is open. */
#else // defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
rx_dma_channel_base = 0;
oam_tx_queue = conn;
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( port_max_connection[i] != 0 )
{
/* Calculate the number of DMA RX channels could be assigned to port. */
rx_dma_channel_assigned = i == ATM_PORT_NUMBER - 1
? (MAX_RX_DMA_CHANNEL_NUMBER - OAM_RX_DMA_CHANNEL_NUMBER) - rx_dma_channel_base
: (ppe_dev.port[i].max_connections * (MAX_RX_DMA_CHANNEL_NUMBER - OAM_RX_DMA_CHANNEL_NUMBER) + ppe_dev.max_connections / 2) / ppe_dev.max_connections;
/* Amend the number, which could be zero. */
if ( rx_dma_channel_assigned == 0 )
rx_dma_channel_assigned = 1;
/* Calculate the first DMA RX channel ID could be assigned to port. */
if ( rx_dma_channel_base + rx_dma_channel_assigned > MAX_RX_DMA_CHANNEL_NUMBER - OAM_RX_DMA_CHANNEL_NUMBER )
rx_dma_channel_base = MAX_RX_DMA_CHANNEL_NUMBER - OAM_RX_DMA_CHANNEL_NUMBER - rx_dma_channel_assigned;
/* first DMA RX channel ID */
ppe_dev.port[i].rx_dma_channel_base = rx_dma_channel_base;
/* number of DMA RX channels assigned to this port */
ppe_dev.port[i].rx_dma_channel_assigned = rx_dma_channel_assigned;
/* OAM TX queue ID, which must be assigned after connections assigned to ports */
ppe_dev.port[i].oam_tx_queue = oam_tx_queue + QSB_QUEUE_NUMBER_BASE;
rx_dma_channel_base += rx_dma_channel_assigned;
for ( j = 0; j < OAM_TX_QUEUE_NUMBER_PER_PORT; j++ )
/* Since connection ID is one to one mapped to RX/TX queue ID, the connection */
/* structure must be reserved for OAM RX/TX queues, and member "port" is set */
/* according to port to which OAM TX queue is connected. */
ppe_dev.connection[oam_tx_queue++ + QSB_QUEUE_NUMBER_BASE].port = i;
}
/* DMA RX channel assigned to OAM RX queue */
ppe_dev.oam_rx_dma_channel = rx_dma_channel_base;
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
for ( j = 0; j < port_max_connection[i]; j++ )
/* Assign DMA RX channel to RX queues. One channel could be assigned to more than one queue. */
ppe_dev.connection[ppe_dev.port[i].connection_base + j].rx_dma_channel = ppe_dev.port[i].rx_dma_channel_base + j % ppe_dev.port[i].rx_dma_channel_assigned;
#endif // defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
/* initialize semaphore used by open and close */
sema_init(&ppe_dev.sem, 1);
/* descriptor number of RX DMA channel */
ppe_dev.dma.rx_descriptor_number = dma_rx_descriptor_length;
/* descriptor number of TX DMA channel */
ppe_dev.dma.tx_descriptor_number = dma_tx_descriptor_length;
/* If used descriptors are more than this value, cell with CLP1 is dropped. */
ppe_dev.dma.rx_clp1_desc_threshold = dma_rx_clp1_descriptor_threshold;
/* delay on descriptor write path */
ppe_dev.dma.write_descriptor_delay = write_descriptor_delay;
/* total DMA RX channel used */
#if defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
ppe_dev.dma.rx_total_channel_used = RX_DMA_CH_TOTAL;
#else
ppe_dev.dma.rx_total_channel_used = rx_dma_channel_base + OAM_RX_DMA_CHANNEL_NUMBER;
#endif // defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
/* total DMA TX channel used (exclude channel reserved by QSB) */
ppe_dev.dma.tx_total_channel_used = oam_tx_queue;
/* allocate memory for RX descriptors */
ppe_dev.dma.rx_descriptor_addr = kmalloc(ppe_dev.dma.rx_total_channel_used * ppe_dev.dma.rx_descriptor_number * sizeof(struct rx_descriptor) + 4, GFP_KERNEL | GFP_DMA);
if ( !ppe_dev.dma.rx_descriptor_addr )
goto RX_DESCRIPTOR_BASE_ALLOCATE_FAIL;
/* do alignment (DWORD) */
ppe_dev.dma.rx_descriptor_base = (struct rx_descriptor *)(((u32)ppe_dev.dma.rx_descriptor_addr + 0x03) & ~0x03);
ppe_dev.dma.rx_descriptor_base = (struct rx_descriptor *)((u32)ppe_dev.dma.rx_descriptor_base | KSEG1); // no cache
/* allocate memory for TX descriptors */
ppe_dev.dma.tx_descriptor_addr = kmalloc(ppe_dev.dma.tx_total_channel_used * ppe_dev.dma.tx_descriptor_number * sizeof(struct tx_descriptor) + 4, GFP_KERNEL | GFP_DMA);
if ( !ppe_dev.dma.tx_descriptor_addr )
goto TX_DESCRIPTOR_BASE_ALLOCATE_FAIL;
/* do alignment (DWORD) */
ppe_dev.dma.tx_descriptor_base = (struct tx_descriptor *)(((u32)ppe_dev.dma.tx_descriptor_addr + 0x03) & ~0x03);
ppe_dev.dma.tx_descriptor_base = (struct tx_descriptor *)((u32)ppe_dev.dma.tx_descriptor_base | KSEG1); // no cache
/* allocate pointers to TX sk_buff */
ppe_dev.dma.tx_skb_pointers = kmalloc(ppe_dev.dma.tx_total_channel_used * ppe_dev.dma.tx_descriptor_number * sizeof(struct sk_buff *), GFP_KERNEL);
if ( !ppe_dev.dma.tx_skb_pointers )
goto TX_SKB_POINTER_ALLOCATE_FAIL;
memset(ppe_dev.dma.tx_skb_pointers, 0, ppe_dev.dma.tx_total_channel_used * ppe_dev.dma.tx_descriptor_number * sizeof(struct sk_buff *));
/* Allocate RX sk_buff and fill up RX descriptors. */
rx_descriptor.datalen = ppe_dev.aal5.rx_buffer_size;
for ( rx_desc = ppe_dev.dma.rx_total_channel_used * ppe_dev.dma.rx_descriptor_number - 1; rx_desc >= 0; rx_desc-- )
{
struct sk_buff *skb;
skb = alloc_skb_rx();
if ( skb == NULL )
panic("sk buffer is used up\n");
rx_descriptor.dataptr = (u32)skb->data >> 2;
ppe_dev.dma.rx_descriptor_base[rx_desc] = rx_descriptor;
}
/* Fill up TX descriptors. */
tx_descriptor.datalen = ppe_dev.aal5.tx_buffer_size;
for ( tx_desc = ppe_dev.dma.tx_total_channel_used * ppe_dev.dma.tx_descriptor_number - 1; tx_desc >= 0; tx_desc-- )
ppe_dev.dma.tx_descriptor_base[tx_desc] = tx_descriptor;
return 0;
TX_SKB_POINTER_ALLOCATE_FAIL:
kfree(ppe_dev.dma.tx_descriptor_addr);
TX_DESCRIPTOR_BASE_ALLOCATE_FAIL:
kfree(ppe_dev.dma.rx_descriptor_addr);
RX_DESCRIPTOR_BASE_ALLOCATE_FAIL:
return -ENOMEM;
}
static inline void clear_share_buffer(void)
{
volatile u32 *p = SB_RAM0_ADDR(0);
unsigned int i;
/* write all zeros only */
for ( i = 0; i < SB_RAM0_DWLEN + SB_RAM1_DWLEN + SB_RAM2_DWLEN + SB_RAM3_DWLEN; i++ )
*p++ = 0;
}
static inline void check_parameters(void)
{
int i;
int enabled_port_number;
int unassigned_queue_number;
int assigned_queue_number;
enabled_port_number = 0;
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( port_max_connection[i] < 1 )
port_max_connection[i] = 0;
else
enabled_port_number++;
/* If the max connection number of a port is not 0, the port is enabled */
/* and at lease two connection ID must be reserved for this port. One of */
/* them is used as OAM TX path. */
unassigned_queue_number = MAX_QUEUE_NUMBER - QSB_QUEUE_NUMBER_BASE;
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( port_max_connection[i] > 0 )
{
enabled_port_number--;
assigned_queue_number = unassigned_queue_number - enabled_port_number * (1 + OAM_TX_QUEUE_NUMBER_PER_PORT) - OAM_TX_QUEUE_NUMBER_PER_PORT;
if ( assigned_queue_number > MAX_QUEUE_NUMBER_PER_PORT - OAM_TX_QUEUE_NUMBER_PER_PORT )
assigned_queue_number = MAX_QUEUE_NUMBER_PER_PORT - OAM_TX_QUEUE_NUMBER_PER_PORT;
if ( port_max_connection[i] > assigned_queue_number )
{
port_max_connection[i] = assigned_queue_number;
unassigned_queue_number -= assigned_queue_number;
}
else
unassigned_queue_number -= port_max_connection[i];
}
/* Please refer to Amazon spec 15.4 for setting these values. */
if ( qsb_tau < 1 )
qsb_tau = 1;
if ( qsb_tstep < 1 )
qsb_tstep = 1;
else if ( qsb_tstep > 4 )
qsb_tstep = 4;
else if ( qsb_tstep == 3 )
qsb_tstep = 2;
/* There is a delay between PPE write descriptor and descriptor is */
/* really stored in memory. Host also has this delay when writing */
/* descriptor. So PPE will use this value to determine if the write */
/* operation makes effect. */
if ( write_descriptor_delay < 0 )
write_descriptor_delay = 0;
if ( aal5_fill_pattern < 0 )
aal5_fill_pattern = 0;
else
aal5_fill_pattern &= 0xFF;
/* Because of the limitation of length field in descriptors, the packet */
/* size could not be larger than 64K minus overhead size. */
if ( aal5r_max_packet_size < 0 )
aal5r_max_packet_size = 0;
else if ( aal5r_max_packet_size >= 65536 - MAX_RX_FRAME_EXTRA_BYTES )
aal5r_max_packet_size = 65536 - MAX_RX_FRAME_EXTRA_BYTES;
if ( aal5r_min_packet_size < 0 )
aal5r_min_packet_size = 0;
else if ( aal5r_min_packet_size > aal5r_max_packet_size )
aal5r_min_packet_size = aal5r_max_packet_size;
if ( aal5s_max_packet_size < 0 )
aal5s_max_packet_size = 0;
else if ( aal5s_max_packet_size >= 65536 - MAX_TX_FRAME_EXTRA_BYTES )
aal5s_max_packet_size = 65536 - MAX_TX_FRAME_EXTRA_BYTES;
if ( aal5s_min_packet_size < 0 )
aal5s_min_packet_size = 0;
else if ( aal5s_min_packet_size > aal5s_max_packet_size )
aal5s_min_packet_size = aal5s_max_packet_size;
if ( dma_rx_descriptor_length < 2 )
dma_rx_descriptor_length = 2;
if ( dma_tx_descriptor_length < 2 )
dma_tx_descriptor_length = 2;
if ( dma_rx_clp1_descriptor_threshold < 0 )
dma_rx_clp1_descriptor_threshold = 0;
else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
}
static struct atmdev_ops ppe_atm_ops = {
owner: THIS_MODULE,
open: ppe_open,
close: ppe_close,
ioctl: ppe_ioctl,
send: ppe_send,
send_oam: ppe_send_oam,
change_qos: ppe_change_qos,
};
int __init danube_ppe_init(void)
{
int ret;
int port_num;
check_parameters();
ret = init_ppe_dev();
if ( ret )
goto INIT_PPE_DEV_FAIL;
clear_share_buffer();
init_rx_tables();
init_tx_tables();
printk("%s:%s[%d]\n", __FILE__, __func__, __LINE__);
for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
if ( ppe_dev.port[port_num].max_connections != 0 )
{
printk("%s:%s[%d]\n", __FILE__, __func__, __LINE__);
ppe_dev.port[port_num].dev = atm_dev_register("danube_atm", &ppe_atm_ops, -1, 0UL);
if ( !ppe_dev.port[port_num].dev )
{
printk("%s:%s[%d]\n", __FILE__, __func__, __LINE__);
ret = -EIO;
goto ATM_DEV_REGISTER_FAIL;
}
else
{
printk("%s:%s[%d]\n", __FILE__, __func__, __LINE__);
ppe_dev.port[port_num].dev->ci_range.vpi_bits = 8;
ppe_dev.port[port_num].dev->ci_range.vci_bits = 16;
ppe_dev.port[port_num].dev->link_rate = ppe_dev.port[port_num].tx_max_cell_rate;
ppe_dev.port[port_num].dev->dev_data = (void*)port_num;
}
}
/* register interrupt handler */
ret = request_irq(IFXMIPS_PPE_MBOX_INT, mailbox_irq_handler, IRQF_DISABLED, "ppe_mailbox_isr", NULL);
if ( ret )
{
if ( ret == -EBUSY )
printk("ppe: IRQ may be occupied by ETH2 driver, please reconfig to disable it.\n");
goto REQUEST_IRQ_IFXMIPS_PPE_MBOX_INT_FAIL;
}
disable_irq(IFXMIPS_PPE_MBOX_INT);
#if defined(CONFIG_PCI) && defined(USE_FIX_FOR_PCI_PPE) && USE_FIX_FOR_PCI_PPE
ret = request_irq(PPE_MAILBOX_IGU0_INT, pci_fix_irq_handler, SA_INTERRUPT, "ppe_pci_fix_isr", NULL);
if ( ret )
printk("failed in registering mailbox 0 interrupt (pci fix)\n");
#endif // defined(CONFIG_PCI) && defined(USE_FIX_FOR_PCI_PPE) && USE_FIX_FOR_PCI_PPE
ret = pp32_start();
if ( ret )
goto PP32_START_FAIL;
qsb_global_set();
HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
/* create proc file */
proc_file_create();
printk("ppe: ATM init succeeded (firmware version 1.1.0.2.1.13\n");
return 0;
PP32_START_FAIL:
free_irq(IFXMIPS_PPE_MBOX_INT, NULL);
REQUEST_IRQ_IFXMIPS_PPE_MBOX_INT_FAIL:
ATM_DEV_REGISTER_FAIL:
clear_ppe_dev();
INIT_PPE_DEV_FAIL:
printk("ppe: ATM init failed\n");
return ret;
}
void __exit danube_ppe_exit(void)
{
int port_num;
register int l;
proc_file_delete();
HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
/* idle for a while to finish running HTU search */
for (l = 0; l < IDLE_CYCLE_NUMBER; l++ );
pp32_stop();
free_irq(IFXMIPS_PPE_MBOX_INT, NULL);
for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
if ( ppe_dev.port[port_num].max_connections != 0 )
atm_dev_deregister(ppe_dev.port[port_num].dev);
clear_ppe_dev();
}
module_init(danube_ppe_init);
module_exit(danube_ppe_exit);
MODULE_LICENSE("GPL");